
J. SYSTEMS SOFTWARE 125
1992:18:125-138

-u -o/

Toward FullLifeCycle Control: Adding
Maintenance Measurement to the S EL

"_-_ -- _ _:- '! 0

H. Dieter Rombach and Bradford T. Ulery

Computer Science Department and Umiacs, University of Maryland, College Park, Maryland

Jon D. Valett

NASA, Goddard Space Flight Center, Greenbelt, Maryland

Organization-wide measurement of software products

and processes is needed to establish full life

cycle control over software products. The Software

Engineering Laboratory (SEL)--a joint venture

between NASA's Goddard Space Flight Center, the

University of Maryland, and Computer Sciences Corpo-

ration-started measurement of software development

more than 15 years ago. Recently, the measurement

of maintenance has been added to the scope of the

SEL. In this article, the maintenance measurement pro-

gram is presented as an addition to the already existing

and well-established SEL development measurement

program and evaluated in terms of its immediate bene-

fits and long-term improvement potential. Immediate

benefits of this program for the SEL include an in-

creased understanding of the maintenance domain, the

differences and commonalities between development

and maintenance, and the cause-effect relationships

between development and maintenance. Initial results

from a sample maintenance study are presented to

substantiate these benefits. The long-term potential of

this program includes the use of maintenance base-

lines to better plan and manage future projects and to

improve development and maintenance practices for

future projects wherever warranted.

1. INTRODUCTION

Most software organizations lack satisfactory control

over their development and maintenance projects. This

lack of control is exemplified by the absence of explicit

models enabling the identification of ambiguous prod-

Address correspondence to Professor H. Dieter Rombach, AG

S _ W Eng., Fachbere.ich lnformatik, Univemitaet Kaiserslautern,

Postfach 3049. D-6750 Kaiserslautern, Germany.

uct requirements, the selection of practices best suited
to achieve given requirements, or the prediction of the

impact early project decisions may have on the quality
of the resulting products. Each organization has its own

set of control problems and reasons standing in the way

of improvement. Comprehensive measurement pro-
grams are needed as a first step toward improvement

[1]. Such programs can help identify the specific prob-

lems of an organization in quantitative terms, pinpoint

possible causes, motivate improvements, and assess
alternatives considered for improvement.

The Software Engineering Laboratory (SEL)--a

joint venture including government, industry, and

university-- began measurement of satellite ground

support software development projects in 1976. The

three primary organizational mdmbers of the SEL are

the Systems Development Branch at NASA's Goddard

Space Right Center, the Computer Science Department

at the University of Maryland, and the Systems Devel-

opment Operation at Computer Sciences Corporation.
This collaboration has produced numerous case studies

and controlled experiments [2-6]. Results from these

case studies and experiments motivated several

improvements within the SEL [7-9].
In 1988, the SEL incorporated maintenance into its

scope of measurement. The result is an even more

comprehensive measurement program in which data is

now being collected during development and mainte-
nance of all software systems. In the SEL, pre- and

posflaunch maintenance activities are performed by

separate organizational entities. Currently, maintenance
data are only collected from prelaunch maintenance
activities. In the remainder of this article, the term

"maintenance" shall refer to this prelaunch phase

© ELsevier Science Publishing Co.. Inc.
655 Avenue of the Americas, New York. NY 10010 5-3

10005788L
PRECEDING PPlGF F_ANK i"_O'T FILr'_ED



126 J. SYSTEMSSOFTWARE H.D. Rombach, B. T. Ulery, and J. D. Valett
t992; 18:125-138

between delivery of a completed software system and

the actual launch of the related spacecraft. This mainte-

nance measurement program is customized to the perti-

nent SEL characteristics, including the definition of

maintenance, the maintenance improvement goals, and

other product, process, and people factors.

Empirical research in the SEL is based on the idea of

continuous improvement. This idea has been formu-

lated as the quality improvement paradigm [I]. Accord-

ing to this paradigm, improvement is the result of

continuously understanding current practices, changing

them, and empirically validating the impact of these

changes. Improvement requires measurement.

In the SEL, measurement goals define the data to be

collected and provide the context for data interpreta-

tion. This goal-oriented approach to measurement has

been formulated as the goal/question/metric paradigm

[I, 10, I I]. It suggests defining each goal by develop-

ing a set of analysis questions, which in turn lead to a
set of metrics and data. The short-term goals of our

maintenance measurement program have been to

increase the understanding of maintenance within the

SEL; the long-term goals are to stimulate improve-
ments in the SEL's ability to plan and manage future

maintenance projects and--whenever needed--to moti-

vate the use of different development and maintenance

practices.

Specific characteristics of the SEL maintenance envi-
ronment _ well as the ccmprehen,_i-',_ scope of our

measurement approach make this program unique. The

study results presented here may not be directly compa-
rable to those from other maintenance environments,

yet they do show how a comprehensive measure pro-

gram can be used to better understand and improve an

organization's development and maintenance process
and products. Few comprehensive maintenance studies

have been published [12-14]. Most empirical mainte-

nance studies report on laboratory-style controlled

experiments [15, 16], isolated case studies [13, 17], or

project surveys [18]. A survey of maintenance studies

has been published by Hale and Haworth [19].

The purpose of this article is to state our initial

maintenance study goals and questions, present the

related results, and propose--based on what we have

learned--a revised set of goals and questions for future
studies.

The study results are organized according to the

types of data used to address the goals and questions:

quantitative maintenance baselines, comparisons

between quantitative development and maintenance

baselines, and qualitative information regarding the

cause-effect relationships between development and
maintenance. These results have increased our under-

standing of maintenance processes and maintained

products in the SEL, commonalities and differences

between development and maintenance, and develop-
ment characteristics affecting maintenance. On occa-

sion, our results are carefully compared with results
from other published studies or widely believed mainte-

nance myths.

We begin our presentation with a background discus-
sion of the SEL and the new maintenance measure-

ment program (sections 2 and 3, respectively). We then

present the results of our study (section 4). We con-
clude with an assessment of the SEL maintenance

measurement program and a revised set of goals and

questions for future maintenance studies.

2. THE SEL

The goals of the SEL are to understand its software

development processes, to measure the effects of vari-

ous methods and tools on these processes, and to

identify and then apply new, improved development

practices. Improved understanding within this particu-

lar environment provides the basis for better planning

and management as well as a rationale for adopting new

practices [4].

Development in the SEL supports satellite missions.

SEL studies generally focus on attitude ground support

systems and their associated simulators. These product

lines are very stable: the system architecture, documen-

tation standards, and organizational responsibilities do

not change significantly from one mission to another.

Attitude ground support systems have 130-240K lines
of FORTRAN source code (where a line of code is

measured as a physical line, including comment lines)

and require 15-30 staff years to develop. Simulators

have 25-75K lines and require 3-10 staff years to

develop.

Research in this environment is guided by two basic

paradigms: the quality improvement paradigm (QIP)

and the goal/question/metric paradigm (GQM). The

QIP, which applies the principle of continuous im-

provement to software engineering, defines the context

for measurement within the SEL [1]. Accordingly,

software development can be improved by iterating the

following steps for each project: (1) characterize the

corporate environment: (2) state improvement goals in

quantitative terms; (3) plan the appropriate develop-

ment practices and methodologies together with mea-

surement procedures for the project at hand; (4) perform

the development and measure, analyze, and provide

feedback; and (5) perform postmortem analysis and

provide recommendations for future projects. Each QIP

iteration is characterize_ by its own set of goals. These

I00067881

5-4



Toward Full Life Cycle Control _. SYSTEMSSOFTWARE 127
1992: 18:125-138

goals reflect--and evolve with--the maturity of the

investigated organization.
Measurement in the SEL is guided by the GQM

paradigm [10]. Measurement is used to characterize

current development practices, monitor and manage

developmem projects, identify strengths and weak-

nesses of the current practices, and evaluate promising
new technologies in a controlled environment. The

GQM paradigm describes a goal-orientedapproach

to measurement in which metrics are tied to spe-

cific measurement goals. According to the GQM para-

digm, each measurement goal is listed explicitly,

a set of specific questions is posed to address each

goal, and specific metrics and measurement proce-

dures are defined to support the questions. The result-

ing data collection procedures and interpretations are

tailormade to the study's goals and local environment

characteristics. For instance, in the SEL, this generally

means that metrics and measurement procedures reflect

the use of SEL-specific development practices, fit the

organizational structure, and permit comparisons with

historical data. Goals, questions, and metrics provide a

context that helps ensure that data are interpreted cor-

rectly and are compared only to data and results from
similar contexts.

Two types of measurement ate common in the SEL:

routine monitoring and exploratory studies. Routine

monitoring is used to characterize the local environ-

m_llL broadly. The resulting qua_Ritative and qualitative

baselines are used to plan and manage new projects and

to compare the effects of newly introduced tools or

methods against [6]. Objective and subjective data are

routinely gathered for each project [20]. Objective data

include staff hours, computer utilization, source code

growth, and the number and kinds of changes made to

the source code. Subjective data characterize the soft-

ware development process and software product charac-

teristics. The data for over 100 projects monitored

over the last 15 years is maintained in the SEL
database [21 ].

Exploratory studies are used when the SEL is in the

initial phase of understanding a process or methodol-

ogy. For example, the SEL is currently studying three
projects following the cleanroom methodology [22].

Special data collection procedures were designed for

these projects to permit researchers to monitor the

effort spent in reading and reviewing designs and code.

Measurement in the SEL has provided a rationale for

making evolutionary changes to NASA's development
practices, including stricter use of code-reading tech-

niques [5], guidelines for Ada projects [23], and the

adoption of the cleanroom development approach [24].
With the addition of maintenance measurement; the

SEL is attempting to lay the foundation for similar

improvements in maintenance.

3. THE SEL MAINTENANCE MEASUREMENT

PROGRAM

The following subsections describe the SEL mainte-

nance environment and the specific goals and proce-
dures of our measurement program. A more detailed

description of this environment, its products, and main-

tenance processes appeared in the proceedings of the

1989 IEEE Conference on Software Maintenance [25].

3.1 Maintenance Environment

In the SEL, maintenance is partly defined by organiza-

tional responsibility and schedule. As depicted in

Figure 1, each product passes through three different

organizational units during its lifetime: analysts produce

the initial functional specifications used by the deve-

lopers and remain responsible for these speci-

fications throughout development and until launch:

operations assumes complete responsibility after

launch. During the period between development

and launch, the analysts have complete responsibility

for the system, including the implementation of any

changes.

In this study, maintenance refers specifically to soft-

ware change activities performed by the analysts during

the postdevelopment, prelaunch phase. By nature of
these constraints, the maintenance phase is typically

shorter in the SEL than in other environments (one to

two years), and the maintenance changes are not trig-
gered by operational failures but by failures detected

during simulated uses of the software by prospec-
tive operators and externally triggered changes of the
overall satellite mission.

i,____ i_.. to-ooo.o,
T_ti_

I- [

I°__R..

- OpmlmOmd UN oq Soltwt*o

Figure I. Organizational structure of the SEL environment.

10006788L

5-5



128 J. SYSTEMSSO_'W_
1992:18:125-138

The products maintained are the same simulators and

attitude ground support systems described in section 2.

Typically, the effort expended during the one- to two-

year time frame that these systems are in maintenance

is approximately 5 % of the development effort. Mainte-

nance procedures vary from project to project depend-

ing on the type of system being maintained, the size of

the maintenance team (2-10 people on the projects

studied), the specific methods and tools elected by the

individual programmers, and other factors. In general,

formal change control procedures are followed; changes

are implemented one at a time, but may be tested

in groups; and one maintainer is responsible for

implementing each change.

3.2 Maintenance Measurement Goals

Consistent with the overall directions of the SEL, we

chose three general goals for the maintenance measure-

ment program: (1) to understand maintenance processes

and products better; (2) to improve our ability to

manage current maintenance projects and plan future

ones; and (3) to establish a sound basis for in _roving

development from a maintenance perspective.
Following the QIP, the initial goals focus on under-

standing maintenance. Representative measurement

goals and questions selected for this study arc summa-

rized in Figures 2, 5, and 11. Analysis results related to

these goals and questions are presented in section 4.

3.3 Maintenance Measurement Procedures

The data collection procedures used in this study were

designed according to the principles of the GQM

paradigm. Data were collected via exploratory inter-

views and routine data collection forms [20]. The rou-

tine data collection forms used during maintenance

include the Weekly Maintenance Effort Form and the

Maintenance Change Report Form (Appendix A). The

effort form is filled out once per week per maintainer

per system; one change form is filled out per completed

change. The weekly effort forms record the distribution

of effort (in staff hours) by type of change (correction,

enhancement, adaptation, or other _) and by engineering

activity (designing, coding, etc.). The change forms

record the distribution of changes by type of change,

size of change, changed objects (e.g., code, user's

guide), expended staff time, fault type (if applicable),

and more. All data are validated through a series of

=All maintenance effort that cannot be aRributexl to an individual

maintenance change is classified as "'other." This includes effort

related to management, meetings, and training,

H. D. Rombach, B. T. Ulery, and J. D. Valett

checks by the data entry personnel, project managers.
and SEL researchers. Data are stored and made avail-

able to researchers and developers through the SEL
database [21].

4. MAINTENANCE MEASUREMENT BENEFITS

The maintenance measurement program has already

increased understanding of maintenance in the SEL.

Previously, much of this understanding was at best

intuitive and approximate. In this section we demon-
strafe what we have learned as a result of our initial

study. The results are separated into baseline character-

izations of maintenance, a comparative analysis of

development and maintenance, and an analysis of how

development decisions affect maintenance.

In this study, we restrict our analyses to three large

attitude ground support systems for which we have

complete and valid data: the Gamma Ray Observatory,
the Geostationary Operational Environmental Satellite,

and the Cosmic Background Explorer. Maintenance of
these systems was performed between 1988 and 1991.

A total of 90 changes and over I0,000 hours of effort

serve as the basis for all quantitative analyses of main-
tenance presented here.

Examining the data on these three projects has pro-

vided valuable insight into the maintenance process

within this environment. The results presented here are

intcnded t_, demonstrate the increased understanding
of the maintenance process that can result from a

measurement program.

4.1 Maintenance Baselines

The first step toward understanding any environ-

ment is to develop baselines describing that environment

[12, 14]. The goals and questions related to this part of
the SEL study are listed in Figure 2. They are intended

GOAL 1: Characterize the changes performed during
maintenance.

QUESTION I
How many changes of each type are completed?

QUESTION 2
How much effort is spent on changes of each type?

GOAL 2: Characterize product evolution during
maintenance.

QUESTION 3
How much code is affected by each change?

QUESTION 4
Is code added, changed or deleted?

GOAL 3: Characterize the maintenance process stability
QUESTION 5

How do maintenance processes differ across projects?

Figure 2. Measurement goals for understanding maintenance
in the SEL.

10006788L

5-6



• Toward Full Life Cycle Control J. SYSTEMS sorrw^RE 129
• 1992" 18:125-138

to characterize what kinds of changes are performed

during maintenance, which pans of the systems change
and how, and what maintenance processes are fol-

lowed. In the long term, the resulting baselines are

expected to provide a basis for determining whether

new techniques or process adjustments have any mea-

surable impact on the SEL maintenance processes or

products: Any comparison between SEL baselines and
baselines from other environments must take environ-

mental differences into account.

Each maintenance change in this environment is well

defined by a formal change request. There are several

key steps in the change process: changes must be

approved, implemented, tested, and released. In gen-
eral, more changes are approved than can be imple-

mented. This poses the difficult management problem
of selecting which changes to implement. This decision

is based on the importance of the changes approved as

well as the budget available to make changes. The

implementation of a change is performed by one pro-
grammer; there is no standard, formal methodology.

Testing, beyond debugging by the programmer, is per-

formed for several changes at once. One important

implication is that the associated effort measured cannot

be ascribed to a particular change. In fact, testing is

typically performed at two levels: the first level pro-

vides internal checkpoints for configuration manage-
ment; the second level occurs before each release.

Each maintenance change performed in the SEL is
classified as an enhancement, adaptation, or correction

[26]. A simple count of changes suggests that mainte-

nance is primarily corrective; however, the effort distri-
bution reveals that most effort is actually related to

enhancements (Figure 3). Either way, adaptations do

not seem to contribute significantly (Figure 2, questions
1 and 2). Note that the average enhancement requires

just over twice the effort of the average correction.

This phenomenon could be caused by the fact that

enhancements are typically larger than corrections,

that enhancements are inherendy more difficult to

accommodate into an existing system, or both.

As early as 1976, Belady and Lehman [14] demon-

strated the benefits of program evolution models for the

purpose of understanding the decay of software under-

going change. Figure 4 summarizes how many modules

and lines of source code have been added, changed, or

deleted per change (Figure 2, questions 3 and 4). On

average, three lines of code are added for every exist-

ing line changed or deleted. Entire modules are rarely
added and never deleted. In the SEL, maintainers do

not significantly alter the system's architecture to make

changes. We hypothesize that the high number of lines
added reflects the high proportion of enhancements,

and that architectural stability reflects an "if it ain't
broke don't fix it" attitude. Such an attitude could be

explained by the general lack of understanding of over-

all system architecture. The observed growth pattern

also suggests that module functionality increases during
maintenance, leading to a decrease in module cohesion.

Decreased cohesion may not be a problem during the

short lifespan of a satellite system, but may reduce

the reuse potential of modules in future developments.

Our most striking observation about SEL mainte-
nance is the extent to which the maintenance processes

vary across similar projects (Figure 2, question 5).

Some of the variability reflects the size and composition
of the maintenance teams (2-10 programmers). One

particular area where the processes differ appears to be

in the approach to testing. The projects studied have
not established well-defined criteria for when system or

integration testing should be performed during mainte-

nance. Such variability in the process reflects the rela-

tively ad hoc nature of the maintenance environment as

compared to the development environment. In fact,

Correction
Other

27%
29%

Enhancemeni
37%

Effoa

AaapuUton

4%

37%

Number of Changes

Figure 3. Distributions of effort and number of changesby type.

CormctJon

59'%

10006788L

5-7



130 J.SYSTEMS SOFTWARE H.D. Rombach, B. T. Ulery,and J.D. Valett
1992; 18:125-138

120'

100'

0

c
--i

]

Figure 4. Linesofcode and modulesperchange.

c_

Modules

0.0

Oeletecl -.

studies such as this one aim at increasing the maturity

of the maintenance process within this environment. By

identifying which aspects of the process are most suc-

cessful, a single consistent process will be identified•

4.2 Maintenance vs. Development

Applying experience from past development studies to

maintenance requires an understanding of the similari-
ties and differences between maintenance and develop-

ment. The goals of this part of the study were to

compare changes made during development and main-

tenance, types of changes, and change processes

(Figure 5). These comparisons are possible because
both development and maintenance data are available

for the three systems studied.
Throughout development and maintenance, the effort

spent on each change is recorded. Effort is classified

as easy when it takes less than an hour to complete

a change, medium when it takes between an hour and a

GOAL 4: Compare changes made during development and
maintenance.

QUESTION 6
How does the effort per change compare?

GOAL 5: Compare the types of changes made to products
at both phases.

QUESTION 7
Are the faults found during maintenance different than
those found during development?

QUESTION 8
How do the distributions of errors by class
compare?

GOAL 6: Compare change processes at both phases.
QUESTION 9

How does the distribution of effort by activity type
compare?

Figure 5. Measurement goals for understanding the similari-
ties and differences between development and maintenance.

day, and hard otherwise. A distinction is made between

the effort to isolate a change (understand the request
and locate the affected modules) and the effort to com-

plete the change (design. code, test). Figure 6 shows

that changes performed during maintenance generally

require more effort than those performed during devel-

opment (Figure 5, question 6). We consider two

hypotheses that might account for this pattern: changes

requested during maintenance are inherently harder
than those requested during development; and it is

more difficult to perform the same change during main-

tenance than it would be during development. While we

cannot determine whether par_cul_- m_,dulc_ are easy

or difficult to change during maintenance based on our

data, we are able to examine both hypotheses further at

the level of the individual change.

Regarding the first hypothesis, we find no obvious
difference between the effort distribution patterns for all

changes (Figure 6) and corrections only (Figure 7). We
conclude that the increased effort is not primarily due to

differences in the distributions of types of changes

requested.

Regarding the second hypothesis, various character-
istic differences between development and maintenance

are commonly thought to explain why the same change

might be more difficult to perform during maintenance.

These include product factors (such as increased com-

plexity and missing or out-of-date documentation), pro-
cess factors (such as schedule constraints, mctheds, and

tools), and people factors (such as a lack of familiarity
with the software). In the SEL, we cannot attribute the

maintenance difficulties to product factors because there

is already a sharp increase in change effort during

acceptance test, but little change in the products.

Instead, we suspect some combination of process and

people factors. Although we are unaware of any sig-
nificant methodological differences between the

100067118L

5-8



Toward Full Life Cycle Control J SYSTEMSSO_VARE 131
1992:18:125-138

g

8
o

¢

et

80%

60%

40%

20%"

I Maunwnanoo[] Development

0%

Easy Medium

Effort to Isolate Changes

Hard

g

(b
o

80%

6O%

4O%

20%

0%"

Ea w Medium Hard

Effort to Complete Changes

Figure 6. Effort to isolate and complete changes: mainte-
nance vs. development. Easy, (l hour; medium, )1 hour and
(1 day; hard, )1 day.

0%

8O%

Easy Medium Hard

Effort to Isolate Faults

Easy Medium I-bud

Effort to Complete Faults

Figure 7. Effort to isolateand completefaults: maintenance
vs. development.Easy, (] hour: medium,/l hour and (l day;
hard, )1 day.

way a change is implemented during development
or maintenance, development has a much higher

rate of change activity: these systems average
over 1,000 changes during testing. Although the high

number of changes may increase certain costs (e.g.,

configuration control), it may actually reduce others
(e.g., testing is not repeated once for every change).

Maintainers are not only generally unfamiliar with the

systems they maintain, but the volume of maintenance

may be insufficient to develop such familiarity. We

expected the unfamiliarity with the maintained systems
to have a more dramatic impact on the isolation activity

(which might require an understanding of the entire

system) than the completion activity (which typically

requires only an understanding of individual modules).

Instead, we discovered a proportional increase in both

isolation and completion efforts (Figure 6). This may

be explained by the fact that SEL maintainers are

experts in the application domain, not software devel-

opment; therefore, they may be expected to readily

understand the change specifications, but not the code.

Both during development and maintenance a signifi-

cant fraction of the changes are corrections (Figure 3).

Figure 8 shows that the types of faults corrected during

development and maintenance are similarly distributed

(Figure 5, question 7). During maintenance, more cor-
rections are related to incorrect initialization (21 vs.

17%) and logic (25 vs. 19%), but fewer are related to

incorrect interface (19 vs. 22%), data (26 vs. 28%),

and computation (9 vs. 14%) as compared to develop-

10005788L

5-9



132 J. SYSTEMS SOFTWARE H. D, Rombach, B. T. Ulery, and J, D. Valett
1992; 18:125-138

U Maintenance

[] Development

Initialization Logic Interlace Data

Figure 8. Number of faults per class: maintenance vs. development.

Computational

ment (see [20] for definition of classification scheme).
Some of the differences seem to be related to the

organizational structure of the environment. Mainte-

nance is performed by people more familiar with the

application domain and less familiar with the solution

domain. The opposite is true for the developers. In this

environment, many application-specific parameters are
reflected in the soR_are as initialization parameters. ,%

such, they require a clear understanding of the applica-
tion, and faults are more easily found by maintainers.

The opposite is true for typical solution faults such as

interface and computational faults.

Figure 9 shows that the distributions of errors differ

significantly between maintenance and development

(Figure 5, question 8). During maintenance, many
more faults are attributed to inappropriate requirements

or specifications (26 vs. 3%), and a few more are

attributed to inappropriate design (11 vs. 8%): fewer

are attributed to inappropriate implementation (55 vs.

79%) or previous change_ (2 vs. !0%). In attempting to

explain these differences, the following hypotheses have
been formulated. Few faults are attributed to previous

changes during maintenance because maintainers are

unaware of changes made during development and the

"5

o

_ o

60%-

11 Maintenance ][] Development

20%'

3*/. 2"/.

o%
Specific_ations Design Code Previous Change

Figure 89. Number of faults per source: maintenance vs. development.

100057118L

5-10



Toward Full Life Cycle Control J. SYSTEMSSOFTWARE 133
1992:18:125-138

total number of changes during this phase is low. The

high proportion of faults attributed to the requirements

or specifications reflects the nature of the testing: appli-

cations experts are now using the systems to prepare

for the missions, whereas during development most

testing is performed by the developers themselves.

During development and maintenance, effort data

is collected according to the following process model:

isolation (understanding a requested change and

identifying the affected modules), design (proposing

a change), implementation (implement the proposed

change), unit and system test (testing the changed mod-

ules and system), and acceptance test (testing a set of

related changes). The development data include all

effort; it is not limited to changes.

Figure 10 shows that during maintenance, more effort

is spent on design activities, about the same amount

of effort is spent on implementation activities, and less

effort is spent on testing activities (Figure 5, question

9). The increase in design effort may be explained by a

lack of familiarity with the system structure, resulting

in increased effort to isolate changes. The decrease in

testing effort may be explained by different testing

procedures. During maintenance, integration testing is

almost absent because the system structure doesn't

change much, and acceptance testing is performed for

groups of changes together.

How do these results compare with similar findings

published in the literature? While comparing baseline

data across environments is difficult, some patterns are

evident. The increased cost of maintenance changes and

corrections has been noted previously by many authors

[22. 27]. This lends support to the claim that faults

introduced during design but discovered during mainte-

nance may cost significantly more than if discovered

and corrected earlier in the life cycle [27]. As has been
noted in other environments [28], we find that mainte-

nance changes in the SEL require more "up-stream"
(i.e., design) than "down-stream" (i.e., testing) effort).

4.3 Development for Maintenance

As a final result of the maintenance measurement pro-

gram, the SEL has enhanced its understanding of the

impact of development decisions on maintenance

(Figure 1l). This increased understanding is illustrated

by our initial findings concerning the complexity of

delivered products and the quality of their documenta-

tion. The qualitative results of this section are based

primarily on subjective data from exploratory inter-

views. Nevertheless, they are essential during the early

phases of a measurement program for guiding future

improvement cycles.

Our initial inquiries have revealed complexity prob-

lems related to intermodule structure and the encoding

global information (Figure 11, question 10). Main-

tainers reported major problems related to the fact

that global information was encoded redundantly. For

example, constants were encoded in multiple
FORTRAN common blocks. Software modification fre-

quently resulted in inconsistent representations of global
information.

Two recurrent documentation problems have been

identified (Figure 11, question 11). These concern the

Figure 10. Effort per activity: maintenance vs.
development.

30%

IN Maintenance ][] Development

Design Implement Test Other

Activity

10005788L

5-11



134 J. SYSTEMS sOFTWARE
1992:18:125-|38

GOAL 7: Characterize the impact of the delivered product
on maintenance.

QUESTION 10
What structural product characteristics have positive/
negative effects on maintenance?

QUESTION 11
What product documentation standards have positive/
negative effects on maintenance?

Figure 11. Measurement goal for understanding the effects
of development on maintenance.

use of program design language (PDL) and debug

statements. PDL descriptions of each module are
included in the source code as a header. Most maintain-

ers regard PDL as redundant. Furthermore, the deliv-

ered PDL is usually outdated. In the SEL environment,

developers are required to keep their design PDL as

part of the software module. Unfortunately, this PDL is

frequently obsolete by the time the module reaches the

maintenance phase; thus, it is useless to the maintain-
ers. Also, the majority of people maintaining the soft-

ware suggested that this practice be stopped entirely,

since the same level of abstraction is provided to them
in the code structure and comments.

Many maintainers suggested that the debug interface

of the code be improved. Because attitude ground

support software is highly computational, an exten-
s_.ve debug L-.*.e.,'faceis provided with each system. The

problem with the current debug interface is that fre-

quently it assumes intimate familiarity with the code in
that the output was of the form (variable) = (value).

Maintainers suggested that future debug interfaces

provide a more descriptive explanation of the output

printed.
As we learn more about the problems maintainers

have with the software delivered from development and

identify solutions to these problems, the guidelines and

standards for development [7-9] will be modified to
reflect these recommendations.

5. SUMMARY AND CONCLUSIONS

In this section, we summarize the benefits of the main-

tenance measurement study for the SEL, outline future
maintenance measurement directions within SEL, and

package some of the general lessons learned about

establishing measurement programs for use in other
maintenance enviroments.

5.1 SEL Maintenance Study Benefits

The most immediate benefit of this program has been

an enhanced understanding of the SEL maintenance

H. D. Rombach, B. T. Ulery, and J. D. Valett

environment. The quantitative baselines presented in

the preceding section resulted in a better understanding

of maintenance requests, maintained products, and

maintenance processes. They enabled us to identify.
weaknesses in the SEL maintenance environment.

The comparison between changes performed during

development and maintenance has helped us understand

where we may benefit from existing development base-

lines. For example, whereas the distributions of faults

corrected during development and maintenance are sim-
ilar, effort distributions are not. This suggests that

reuse of lessons learned from development is more

justified when they pertain to faults than when they

pertain to effort.

Baselines may also be used to compare the effects of

new development technologies on maintenance. For

example, both cleanroom and an Ada/object-oriented

design approach have been applied on recent develop-

ment projects with the expectation that "more reliable"

systems will result. We are now in a position to vali-

date these expectations by comparing the effects of the

new approaches to traditionally run projects.
In the long term, development and maintenance are

expected to improve as a result of our increased under-

standing. At this point, recommendations for improve-
ment are based predominantly on qualitative feedback

from maintainers (rather than quantitative measurement

baselines). Most of these suggestions have to do with

the separation of the development and analysis organi-

zations (Figure 1) and the absence of standard mainte-

nance processes. The separation of development and
maintenance means that a maintainer is entirely depen-

dent on the code and documentation acquired at the

time of delivery [29]. Consequently, inadequacies in
the code or documentation are much more of an obsta-

cle to maintenance than in an organization where main-

tenance and development are more closely related.

Each maintenance change is performed by one indi-

vidual without much guidance regarding the main-

tenance process itself. The ad hoc nature of the

maintenance processes makes it hard to measure, com-

pare measurements, and make recommendations. We

expect our measurement program to contribute to the
standardization of maintenance processes over time.

Overall, the SEL maintenance measurement program

is perceived as successful and beneficial to this particu-
lar environment. The lessons learned from our study

have resulted in changes and additions to the SEL

standards and policies for software development [8].
Because numerous new projects are always under

development in the SEL, we will be able to examine
whether the revised standards have a measurable impact

on the quality of the development product.

1000571g_L

5-12



." Toward Full Life Cycle Control J. SYSTEMSSO_'W^RE 135
1992; 18:125-138

5.2 Future Maintenance Research

As we continue to learn about the SEL maintenance

environment, numerous future measurement directions

become evident. Some directions reflect changes in

the environment itself, others reflect changes in our

understanding of the environment. We must continu-

ally revise our goals, questions, metrics, and proce-
dures to reflect the current priorities and understanding.

Figure 12 contains an example set of revised questions
for each of our seven maintenance goals to guide future
maintenance studies.

We must continue to revise our measurement pro-

gram in response to previous misconceptions inherent
in our initial qualitative models of maintenance process.

For example, our current effort classification scheme

does not explicitly recognize configuratio n management
as a discrete activity. This effort is grouped together

with nontechnical activities such as meetings and man-

agement. In the future, we may want to update our data

collection forms to include configuration management

as a separate activity, since it seems to represent a

significant portion of current maintenance effort.

GOAL 1: Characterize the changes performed during
maintenance.

QUESTION 1
How many changes of each type are requested by
different sources (e.g., analyst, operator)?

GOAL 2: Cb.ar_-cter_e product evolution during
maintenance.

QUESTION 2
How does coupling/cohesion change during
maintenance?

GOAL 3: Characterize the maintenance process stability.
QUESTION 3

Which process factors determined process stability
(e.g., staffing level, familiarity with system)?

GOAL 4: Compare changes made during development and
maintenance.

QUESTION 4
What is the average change effort per module during
each phase?

GOAL 5: Compare changes made to products at both
phases.

QUESTION 5
What are the distributions of requirements changes by
type?

GOAL 6: Compare development and maintenance processes.
QUESTION 6

What are the distributions of change effort by activity.
GOAL 7: Characterize the impact of the delivered product

on maintenance.

QUESTION 7
What product characteristics resulting from reuse have
positive/negative effects on maintenance?

Figure 12. Revised measurement questions for future
maintenance improvement cycles.-

When our empirical investigations identify important

phenomena, we must refocus our measurement goals

and questions in order to study the phenomena. For

example, one hypothesized implication of the stable

architecture of the maintained systems (very few

modules are being added or deleted) is that module

cohesion within these systems may be deteriorating.

Such deterioration may lead to weaker and weaker

system architecture, and ultimately lead to even more

difficult maintenance. Such a hypothesis needs much

closer investigation before it can be presented as a

potential problem.
When measurement does identify specific problems,

the next step is to analyze the problems and attempt to

identify viable solutions. For instance, we have quanti-
fied the types and kinds of faults uncovered during

maintenance. Next, we might begin to analyze their

causes in development. Such analysis may lead us to

mechanisms for preventing faults, or it may help us

identify better ways of detecting them.

Finally, the maintenance environment itself is contin-

ually changing. Transitions to the use of Ada and

Cleanroom development in the SEL will require peri-

odic adjustments to our measurement procedures. Such

changes are not unexpected; in fact, measurement by
nature must continue to evolve as the environment

evolves.

5.3 Measurement Lessons Learned

The extension of the SEL into maintenance not only

enabled us to gain experience with maintenance

but also with establishing a maintenance measurement

program [25].
Our first lesson is that there is a distinction, at least

conceptually, between start-up and routine phases of

measurement. During the start-up phase, there is con-

siderable freedom to reevaluate measurement goals and

redesign the metrics and procedures as our understand-

ing of the local priorities and what is feasible grows.
Once data collection forms have been designed and

reflected in the data base and once people have been

instructed in the procedures, it becomes expensive to

introduce further changes. It is therefore critical that

the start-up phase proceed cautiously. We suggest vali-

dating all measurement procedures through pilot studies.
Our second lesson concerns which questions are

suitable for routine measurement. It may be tempting to

use routine measurement as a mechanism for answering

questions that could be resolved more efficiently by
other means. For example, if the software design docu-

mentation is never maintained, it would be wasteful to
discover this via. routine data collection. Routine me.a-

10005788L

5-13



136 J. SYSTEMSSOFTWARE H.D. Rombach, B. T. Ulery, and J. D. Valett
1992; 18:125-138

surement is appropriate for monitoring large-scale and

historical trends, but it is not needed to ascertain simple

facts. Many of the questions we would like to pursue

are risky, i.e., we cannot be sure that the resulting data

will prove useful.
Third, we have found the establishment of a

measurement program in a new environment to be

a time-consuming and sensitive task. Getting the pro-

gram started requires building initial models of the

maintenance organization, the maintained products, the

maintenance processes, and the specific maintenance

problems at hand. These models are used to design the

measurement procedures, but must be validated during

the start-up phase. Special care must also be taken to

establish the creditability of measurement and win the

cooperation needed to make the program a success. To

collect valid data, the people providing most of the data
need to be well motivated and instructed. Motivation

requires addressing measurement goals of direct inter-

est to the people providing cooperation and an opportu-

nity for these people to review and comment on the

resulting data and analyses.

Our analysis results demonstrate the immediate

returns possible from investment in a measurement

program. A measurement program provides invaluable

insight into the processes and products within the given

environment. As long as measurement is performed

within a context of well defined goals and questions,

such a program can be a success for any software

organization.

ACKNOWLEDGMENTS

Research for this study was supported by National

Aeronautics and Space Administration grant NSG-5123 to

the University of Maryland.

We thank the CSC and GSFC personnel who have partici-

pated in our maintanance measurement program--the project

personnel, the SEL data librarians, and those who reviewed

earlier versions of this paper--for their tremendous support.

We also thank Bruce Blum, the editor in charge of our paper,

and the anonymous referees for their excellent suggestions.

REFERENCES

1. V. R. Basiti, Software development: a paradigm for the
future, in Proceedings of the 13th Annual Interna-
tional Computer Software and Applications Confer-
ence, 1989, pp. 471-485.

2. M. Buhler and I. Valett, Annotated Bibliography of
Software Engineering Laboratory Literature, SEL-82-
906, NASA:/GSFC, Greenbelt, Maryland, 1990.

3. V. R. Basili, Measuring the software process and prod-
uct: lessons learned in the SEL, in Proceedings of the
lOth Annual Software Engineering Workshop, I985.

4. F. E. McGarry, Studies and experiments in the SEL, in

Proceedings of the lOth Annual Software Engineering
Workshop, 1985.

5. R. W. Selby, Jr., and V. R. Basili, Comparing the
Effectiveness of Software Testing Strategies. IEEE
Trans. Software Eng. 13:1278-1296 (1987).

6. J. D. Valett and F. E. McGarry, A summary of software
measurement experience in the Software Engineering
Laboratory, in Proceedings of the 21st Annual Hawaii
International Conference on System Sciences, 1988.

7. F. McGarry, G. Page, S. Eslinger, V. Church, and
P. Merwarth, Recommended Approach to Software
Development, SEL-81-205, NASA/GSFC. Greenbelt,
Maryland, 1983.

8. Manager's Handbook for Software Development. rev. 1.
SEL-84-101, NASA/GSFC, Greenbelt, Maryland, 1990.

9. R. Wood and E. Edwards. Programmer's Handbook for
Flight Dynamics Software Development, SEL-86-O01.
NASA/GSFC, Greenbelt Maryland, 1986.

10. V. R. Basili and D. M. Weiss, A Methodology for
Collecting Valid Software Engineering Data. 1EEE
Trans. Software Eng. SE-10, 728-738 (1984)

11. V. R. Basili and H. D. Rombach, The TAME Project:
Towards Improvement-Oriented Software Environments,
IF_,EE Trans. Software Eng. 758-773 (1988).

12. R. B. Grady, Measuring and Managing Software Mainte-
nance, IEEE Software 4. 35-45 (1987).

13. R. Arnold and D. Parker, The dimensions of healthy
maintenance, in 6th International Conference on Soft-
ware Engineering, 1982, pp. 10-27.

14. L. Belady and M. Lehman, A Model of Large Program
Development, IBM 3yst. J. 3,225-252 _l_50).

15. H. D. Rombach, A Controlled Experiment on the Impact
of Software Structure on Maintainability, IEEE Trans.
Software Eng. SE-12, 344-354 (1987).

16. C. K. S. Chong Hok Yuen, An empirical approach to the
study of errors in large software under maintenance, in
Conference on Software Maintenance-1985. 1985,
pp. 96-105.

17. H. D. Rombach and V. R. Basili, Quantitative assess-
ment of maintenance: an industrial case study, in IEEE
Conference on Software _Waintenance- 1987, 1987,
pp. 134-144.

18. B. W. Boehm and P. N. Papaccio, Understanding and
Controlling Software Costs, IEEE Trans. Software
Eng. SE- 14, 1462-1477 (1988).

19. D. P. Hale and D. A. Haworth. Software maintenance: a

profile of past empirical research, in Conference on
Software Maintenance - 1988, 1988, pp. 236-240.

20. G. Heller, Data Collection Procedures for the Rehosted

SEL Database, SEL-87-008, NASA/GSFC. Greenbelt.
Maryland, 1987.

21. M. So, SEL Database Organization and User's Guide,
SEL-89-O01, NASA/GSFC, Greenbelt, Maryland, 1989.

22. H. D. Mills, Software Development, IEEE Trans. Soft i
ware Eng. 2:265-273 (1976).

23. C. Brophy, Lessons Learned in. the Transition to Ada
from FORTRAN at NASA/Goddard, SEL-89-005,
NASA/GSFC, Greenbelt, Maryland, 1989.

1000671181.

5-14



Toward FuU Life Cycle Control ]. SYSTEMS SOFTWARE 137
1992; 18:125-138

24. S. Green, A. Kouchakdjian, V. Basili, and D. Weidow,

The Cleanroom Case Study in the Software Engineering

Laboratory: Project Description and Early Analysis,

SEL-90-002, NASA/GSFC, Greenbelt, Maryland, 1990.

25. H. D. Rombach and B. T. Ulery, Establishing a mea-

surement based maintenance improvement program:

lessons learned in the SEL, Conference on Software

Maintenance- 1989, 1989, pp. 50-57.

26. E. B. Swanson, The dimensions of software mainte-

nance, in Proceedings of the 2nd IEEE International

Conference on Software Engineering, 1976. pp. 492-

497.

27. B. Boche, Software Engineering Economics.

Prentice-Hall. Englewood Cliffs, New Jersey, 1981.

28. N. Chapin, Software Maintenance Life Cycle, in Con-

ference of Software Maintenance-1988, 1988, pp.
6-13.

29. E. B. Swanson and C. M. Beath. Departmentalization in

Software Development and Maintenance, Commun.

ACM 33,658-667 (1990).

APPENDIX A: Data Collection Forms

WEEKLY MAINTENANCE EFFORT FORM

Name:

Pmj_'t:

Friday Date:

Section B - Hours By Class of Maintenance rr_se_kma _w,M_a,m_Sm_aAl

Clmu Definition Hours

Correction Houm spent on sil melntcr-,oce associated with a system
failure.

Enhancement Hours spent on all maintenance mmociatcd with modifying the
system due to s requirements change. Includes adding,
deleting, or modifying system features as a resuR of a
requirements change.

Hou_ .%-_enlon all rr.aintsnaoc_ associate(; with me/trying •
system to adapt to a change in hardware, system software, or
environmental characteristics.

Other Other hours spent on the project (related to maintenance) not

covered above, includes management, meetings, etc.

Section C - Hours By Maintenance Activity cr=_ of ao._ b. s.=aonc _ eq_ t,_ _ _ sedoa A)

ACtivity ACtivity DefinlUons Hours

Isolation Hours spent understanding the failure or request for
enhancement or edmptstion.

Change Hours spent actually redesigning the system based on an
Design understanding of the necessary change.

Implementation Hours spent changing the system to complete the necessary
change. This Includes changing not only the code, but the
asoccJxted documentation.

Unit Test/ Hours spent testing the changed or added components.
System Test Includes houm spent tasting the integration of the components.

Acceptance/
Benchmark Test

Other

Hours spent lc¢epblnce tasting or benchmark testing the
modified system.

Other hours spent on the project (related to maintenance) not
covered above, includes management, meetings, etc.

MAY 1989

Figure AI. Weekly Maintenance Report Forms.

1O0067881.

5-15



138 J. Svs'r_MS SOFTWARE H.D. Rombach, B. T. Uleryl and J. D. Valet_
1992; 18:125-138

_e¢ t._i.-.i,_', tim 0._
MAINTENANCE CHANGE REPORT FORM

Name: OSMR Number:.

Project: Date:

Ntm_m_.

cma_m _r

SECTION A: Change Request Information

Functional Doscrlption of Change:

What was the type of modification?

Correction

Enhancement

Adaptation

SECTION B: Change Implementation information

Components Changed/Added/Deleted:

What caused the change?

Requlrernenta/specifications

Software design

Code

Previous change

Other

Estimate effort spent Isoiating, determlning the change:

Estimate effort to design, implement, and test the change:

lhrto ldayto lmkto
< lhr 1 day 1 week 1 month • 1 month

Check all changed objects:

Require rnents/Speciflcationa Document

Design Document

Code

System Description

User's Guide

Other

If code changed, cham-.tarixe the chsnge {che_.k most

applicable)

Initialization

Logic/control structure

(e.g, changed flow of control)

inter/ace (internal)

(module to module communication)

Intartsce (external)

(module to external communication)

Data (value or structure)

(e.g., variable or value changed)

Computationsl

(e.g., change of math expression)

Other (none of the above apply)

Estimate the number of lines of coda (including comments):
added changed

Enter the number of components:

mddnd changed deleted

Enter the number of the added components that ere
totally new totally reused

deleted

reused with

modifications

MAY 1989

FigureA2. MaintenanceChange ReportForm.

tn

I0005788L

5-16


